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Pore-scale modeling of saturated permeabilities in random sphere packings
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We use two pore-scale approaches, lattice-Boltzniabrn and pore-network modeling, to simulate single-
phase flow in simulated sphere packings that vary in porosity and sphere-size distribution. For both modeling
approaches, we determine the size of the representative elementary volume with respect to the permeability.
Permeabilities obtained by LB modeling agree well with Rumpf and Gupte’s experiments in sphere packings
for small Reynolds numbers. The LB simulations agree well with the empirical Ergun equation for intermediate
but not for small Reynolds numbers. We suggest a modified form of Ergun’s equation to describe both low and
intermediate Reynolds number flows. The pore-network simulations agree well with predictions from the
effective-medium approximation but underestimate the permeability due to the simplified representation of the
porous media. Based on LB simulations in packings with log-normal sphere-size distributions, we suggest a
permeability relation with respect to the porosity, as well as the mean and standard deviation of the sphere

diameter.
DOI: 10.1103/PhysReVvE.64.066702 PACS nun)er02.70—-c, 47.55.Mh, 47.15.Gf
I. INTRODUCTION where
Pore-scale models improve our understanding of flow and J D3N(D)dD
transport phenomena in porous media but can also be used to —

obtain macroscale constitutive relationships, which are nec- Do= 1.3

essary to close continuum theories for these phenorfidna J D*N(D)dD
Using pore-scale models as quantitative predictive tools,

however, is not straightforward because the numerical dois the surface average diametéithe porosity, andN(D) the
mains are limited in size by finite computational resources, alistribution function of the grain diametdd. The Blake-
microscopic description of the pore-space geometry iKozeny relation[4] has the same form as the Carman-
needed, and the numerical pore-scale model needs to be p&ezeny, but the constant differs by as much as 20%. Rumpf
rametrized. This paper deals with the prediction of single-and Gupte[5] measuredk in random sphere packings and
phase flow using lattice-Boltzmani.B) and pore-network obtained the empirical relation

models. Faithful modeling of single-phase flow is, for ex-

ample, important for species transport models, the predictive .

capabilities of which require an accurate velocity field. "RG:%¢ o (1.4

On the macroscale, single-phase flow in porous media at
low Reynolds numbers is described by Darcy’s law—or to beThese relations’ shortcomings includ® the limited accu-
more accurate, by its generalization to three-dimensionalacy of the Carman-Kozeny relation in predictirgfor the
flow in isotropic medid 2]: special case of sphere packing®) the breakdown of the

Carman-Kozeny relation for low and high porosities7],
K and (3) the lack of broad experimental support for the
Ug=— ;(Vp+ngz), (1.D) Rumpf-Gupte relation.

Darcy’s law loses its validity if Re exceeds a critical value
Re, that ranges between 0.1 and 75, depending on the pore
structure and the definition of RE8]. As Re increases, there
is a transition from creeping flow to another laminar flow

n2
2

whereuy is the Darcy velocity or the specific discharge,
the saturated permeabilityy the dynamic viscosityp the

fluid pressureg the gravitational acceleration, amdhe ver- . o .
b Y 9 fegime, where inertial forces become import§@. Many

tical coordinate. Because of the complicated geometry o i d bing flow f h b ted
natural pore spaces, analytical forms for the constitutive recorreiations describing tlow for ReRe, have been presente

lation « are not available. A great deal of effort has been'” thg Iiteratyre. The be_st knpwn _relationship is Ergun’s
devoted to empirical relationships amorgand porous me- equation, which was obtained in uniformly packed columns

dium properties. The Carman-Kozefg] is a widely used for intermediate values of Re. It can be formulated as
relationship, which givex for granular media consisting of

5243
arbitrarily shaped particles: E DLéz =A+B E' (1.5
g (1— ) 1-¢
n2
D; ¢° (1.  WhereA=150 andB= 1.75[2]. MacDonaldet al.[10] sug-

KCK= 180 (1— )2 gestedA= 180 andB to lie between 1.8 and 4.0 in order to

1063-651X/2001/646)/0667029)/$20.00 64 066702-1 ©2001 The American Physical Society



CHONGXUN PAN, MARKUS HILPERT, AND CASS T. MILLER PHYSICAL REVIEW B4 066702

match data from a variety of porous media. After our knowl-
edge, a correlation describing flow both in the Darcian (Re
<Re) and non-Darcian (ReRey) regime has not been pre-
sented yet.

Pore-network{1] and LB modeling[11] are considered
useful for simulating flow phenomena in porous media. LB
methods simulate flow by describing the movement and col-
lisions of quasiparticles along a lattice. LB models have been
used to investigate various aspects of single-phase flow in
porous media, including flow through sphere packings
[12,13, cemented medigl4], and media with randomly
placed identical obstaclé&5], critical porositie§6], the rep-
resentative elementary voluméREV) for permeability

[16,17), and higher Reynolds number flojt8]. But thor- _media is conceptually appealir)g. Yang, Miller, and Tgrcol-
ough investigations on the REV's, as well as a comparisonVe" [27] developed a theoretical approach for packing a

between simulations and existing permeability relationships/@'9e number of random-size nonoverlapping spheres. We
e log-normal sphere-size distributions, because many natu-

h t yet b ted f broad f sphet&
pg\éﬁinr;?s. yet been presented for a broad range of sp eraI porous media can be described by such a distribliign

Pore-network models are simplified representations of pol N€ Simulated porous media are generated by using easily
uantifiable macroscopic measures of a porous medium as

rous media that usually consist of analogs of pore bodies and
throats, along with a description of how the pore bodies arénput parameters: the medh and standard deviatioa, of
connected via the pore throats. The main difficulty in usingthe sphere diametdd, and the porosityp as well.
pore-network models in a quantitative predictive sense lies in
choosing the geometric shape, sizes, locations, and orienta- B. Lattice-Boltzmann simulation
tions of the pore bodies and throats. Quantitative predictions
for k require a calibration of the network geometry, which
can be accomplished by estimating the pore sizes from mea- We implemented a three-dimensional LB model as de-
sured capillary pressure-saturation cury9,20, deriving  scribed in the literatur¢28,29. This model has 15 fixed
the network from a detailed representation of a sphere packeelocity vectorss;, wherei=1,2, . . .,15, andncludes a rest
ing, using a subdivision of the packing into tetrahef2a], particle (=15). Figure 1 shows the lattice structure. The
mapping a three-dimensional digital representation of thealistribution function f;(X,t) stands for the probability of
pore space onto the statistical properties of a pore networfinding a particle with velocityg; at locationX and timet.
[22,23, or identifying the actual positions and sizes of poreThe fluid density is given by’ =3,f; and the velocity by
bodies and throats from a three-dimensional digital represeni’ =3.;f;& /p'. Evolution in time is ruled by
tation[24]. Although methods for estimating pore sizes from
grain-size data exisf25,26, an approach that predicts 1
from a network model, based only on grain-size data and fi(X+§ ,t+1)—fi(>2,t)=—[fi(eq>(>?,t)—fi(>?,t)].
porosity, has not been presen{dd. T

The objectives of this work ar¢l) to implement and
evaluate an LB and a pore-network model to simulate flow ] ] ) ] )
through sphere packing€) to find a statistically supported The left-hand side of this eq'uatlon rep_resents Fhe interaction-
REV for packings with varying uniformity, using both mod- free_: movement _of the part!cles. _Partlcle coII|S|_ons are de-
els, (3) to investigate the transition region between DarcianScribed on the right-hand side, with the approximation of a
and non-Darcian flow(4) to compare LB simulations with single-rate relaxation to the equilibrium distribution function
existing empirical relations for permeability for a broad f{°®, which depends locally od" andp’. If this function is
range of packings, an@) to formulate a correlation function chosen properly, Eq2.1) is equivalent to a nondimensional
for the permeability in sphere packing with log-normal Navier-Stokes equatiodld’/dt= —(1/p’)ﬁp’+ AE T

FIG. 1. Lattice structure of the LB model with 15 velocity di-
rections per lattice node.

1. Model structure

(2.1

sphere-size distribution. the limit of incompressible flow, where the kinematic viscos-
ity is given by »'=(27—1)/6 and the pressure bp’
Il. NUMERICAL METHODS =3p'/8[28,30. N _ _
_ The no-slip boundary condition at the solid surface is
A. Porous media implemented by a bounce-back schefx,t+1)—f;(X,t)

Modeling flow in porous media requires detailed informa- = 1/ f*?(X,t) — f;(X,t)], wherej is related toi by &=
tion about the pore structure, which necessitates either smalf= € [29]. This scheme assumes the wall with the no-slip
scale experimental measurements using, for exampléoundary condition to be located midway between the solid
nuclear magnetic resonan¢8dMR) or serial sections, or a node and the fluid node, where the particle originates. At the
theoretical approach to provide a meaningful representatiorinlet and outlet, we prescribe constant densitieandp; by
The experimental measurements, however, are timemplementing the pressure boundary conditions as described
consuming and expensive, so the use of simulated porous Refs.[28,30.
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1

FIG. 3. (Colorn Simulation of a single-phase flow in a pore
network. The shading of the pores stands for the pressure, which
decreases from the bottom to the top of the network. The colors of
the throats show the normalized flow rates.

FIG. 2. (Color Porous medium with velocity field obtained by

LB model_ing. Blue: solid_ phase._ The size of the red cone indicatesbore body is connected to at most six neighboring bodies via
the magnitude of the fluid velocity. pore throats along the lattice axes; the maximum coordina-
o _ tion number isZy=6. We obtained coordination numbers
One can determine important macroscopic measures gf<g py cutting the pore throats randomly. The network is
the flow field from the microscopic nondimensional vari- periodic in both horizontal directions. The top and bottom of
ables. The permeability is=8»'L%p'ug/(83NAp’), where  the network are connected to constant pressure reservoirs.
L is the length along the flow directioN the number of Incompressible single-phase flow of a viscous fluid is
lattice nodes along the flow directiomy the nondimensional modeled as described by Fenwick and BI[8t]. The pres-
Darcy velocity, andAp’ = p;—p5. The Reynolds number is sure drop between the two adjacent bodiesd] is p;— P;

Re=u/D,N/(»'L). Figure 2 demonstrates part of a digital po- =Qij /dij ,» WhereQ;; is the flow rate andy;; the conduc-
rous medium with the steady-state flow velocity fieidob- ~ tance between pore bodiesndj. g;; depends on the local

tained by a LB simulation. network geometry and the dynamic viscosify Note that
pressure drops occur in both pore throats and bodies.
2. Validation of an LB model Applying the continuity equatior®;Q;;=0, at all pore

) ] _bodies except those on both flow boundaries where pressures

To validate our LB code, we simulated steady-state lamize fixed, yields a sparse symmetric system of linear equa-
nar flow in a duct with a square cross section. lIfions, The unknown pressures are determined using the itera-
[Zlu" (X )|/ 250" (X,t+50)| —1|<10"% we considered e conjugate gradient method. We compute the total flow
the simulation converged. We studied convergence with regaie through the network and determireusing Eq.(1.1).
spect to the relaxation timeand the duct widthm measured  Figyre 3 illustrates a flow simulation in a pore network.
in lattice units. We achieved second-order convergence as
described elsewhel@8,30,29. For r=1, the relative error
between the simulated and analytical velocity in the duct
center(whereu’ is maximum decreased from 39% fan For calibrating the pore networks, we mapped the digital
=3 to 1% form=17, consistent with the investigation of pore space onto the size distributions of the pore bodies and
Maier et al. [29]. For 7=0.8, which usually requires more throats and onto the coordination numiZeof the network.
time steps to achieve convergence, we obtained 11% relatiwt/e first determined integral geometric quantities of the
error form=3 and 0.5% form=17. Therefore, we used  sphere packings, the morphological pore-size distribution
=0.8 for all remaining simulations. Zou and H28] pre- and the genus, and used these data to calibrate the network.
sented a more complete investigation on the impaet &fur ~ The calibration approach is described in detail in Hilpert,
results show that, with sufficient spatial resolution, a LBGlantz, and Miller[32], who used it to obtain good predic-
model accurately simulates flow processes. tions for hysteretic capillary pressure-saturation curves. We
will only briefly describe its methodology.

The cumulative morphological pore-size distribution

2. Pore-network calibration

C. Pore-network modeling
1. Model structure

Our pore-network model consists of cubic pore bodies F(r)= VoI[U (Sg(r):Si(r)CP)] 22
connected by pore throats with square cross sections. Each Vol[ P] '
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guantifies that fraction of the pore spdeehat is at least as TABLE I. Sphere-packing realizations for the RSP1 and RSP23
large as a spher8 of radiusr. The subscripk denotes the porous media.
translation ofShy the vectoiX. F(r) can be readily obtained

for digital porous medi@33]. A measure for the connectivity RSP1 RSP23

of a three-dimensional geometric object is the EuIer—PofncarS (mm) 0.199 96 0.0011 0.192 45 01245

characteristigy [34]. For sphere packings subject to gravity, L (mm) 4950 o100

x of the pore spac® is . mm 0.442 0_334
x(P)=1-G(P), 23 Ng 10328 14380

where the genu§ is the maximum number of fully penetrat- ) o ) —

ing cuts that one can make throughwithout producing Packings were statistically described By op, and ¢. We
more separate componentg.can be readily obtained for did not prescribe spatial correlations for the sphgre sizes. The
digital pore spaces by counting the corners, edges, surfacg0rosity ¢ ranged from 0.33 to 0.45 and the relative standard
and cubes oP [35]. deviation of the grain siz&rp= o /D, from 0 to 0.66.

We make a range of assumptions to reduce the number of To estimate the error ir caused by a finite discretization
parameters characterizing the network geomdttynormal  and domain size, we thoroughly investigated two of the 25
pore-body and pore-throat size distributioni2) the mean packings, the most uniforfRSP2 with =0.005 and the
pore-body size as twice the mean pore-throat g2eequal least uniform(RSP23 with o= 0.65. Table | lists the prop-
relative standard deviations for the pore throats and bodiegrties of these packings, wheres the domain length and
(4) nonoverlapping pore-body and throat size distributionsthe number of spheres.
and (5) strong spatial correlations among pore-throat and
pore-body sizes. The lattice constant is given Yoy [(1 B. LB modeling
—212)/x,1"3 because we require the network to possess the
same Euler number per volume , as the sphere packing.

The assumptions above leave us with two calibration pa- We simulated low Reynolds number flow (R&)
rameters: the coordination numb&and the nondimensional through the RSP1 and RSP23 packings and varied the num-
mean pore-body radius,/\, which solely determines the ber of voxelsm along each dimension of the cubic domain.
pore-size distributions. We determiZeandr,, by minimiz-  Let «,,, denote the permeability obtained at discretizatian
ing the quadratic error betwedf(r) of the digital porous «,, converges toc, asm—ow. We considered a leveh to
medium and the pore network using a constrained optimizaprovide a discretization-independent if |xmn— .|/ k.,

1. Discretization effects

tion algorithm[36]. <0.5%.
We used Richardson’s extrapolation to estimate by
3. Effective-medium approximation assuming thaik,,,— ..~ (1/m)", wheren is the order of the

For pore networks, the effective-medium approximationnUmerical convergence. We then estimated from the
(EMA) can be used to estimatewithout solving any flow Simulations at levein; and a finer levemn,:
equations. The EMA substitutes the heterogeneous network
with a uniform one, where all pore connections possess the
same effective conductaneg, which satisfies the integral
equation

m,/my) k. — K
(M2 /M) " Km, = Km,

(3.9

e T My my) "~ 1

From the results in Table Il, we determinae-2.02 for the
o g-0e RSP1 anch=2.05 for the RSP23 packing. Those values re-
f (9) =5 75—:dg9=0, (2.4  veal that second-order convergence can be achieved, not
g+0e(Zp/2—1) S . .
only for flow in simple geometries, but also for flow in po-

. o . rous media, consistent with the observation of Mageal.
whereN(g) is the distribution function of the pore connec- [29]. Based Onkyss and xspp, We calculatedk.,=6.311

tion conductanceg [37]. Note thatN(g) represents also the %10~ 7 en? for RSP1 andc.. = 8.082x 10”8 cn? for RSP23
pori thrc_)?]ts, which rr\]ave been k():?g=(0) tho ach_leve Qet' For both packingsg becomes discretization independent if
works with Z<Z,. The permeability is then given by > >56 Expressed in terms of the number of lattice nodes

=gen/\. per mean sphere diametérthis condition becomes>12,
as shown in Fig. 4.
. NUMERICAL RESULTS This result differs from the investigation of Maiet al.

[29], who obtained/=36.6 for a packing of 222 uniform
spheres. They observed 30% error compared withat the

We simulated 25 different sphere packings using the comsame discretization level at which we reached resolution-
puter code developed by Yang, Miller, and Turcolif27].  independent results. This is likely due to the fact that they
The sphere packings had log-normal grain-size distributiong,sed+=1.
for which D,=D[1+ (05 /D)?]?. To achieve reliable pack- To verify our findings, we considered a subset of the
ings, we simulated packings with at least 10 000 spheres. THBSP1 packing containing 262 spheres labeled as RSP1-sub.

A. Porous media
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TABLE II. Results of the investigation on the dependence of the permeakility the discretization leveh for =0.8.

Medium m ¢ Re uy ) « (cn?)
RSP1 64 3.0 0.04 1.28710 4 0.443 9.19x 107
RSP1 128 6.0 0.02 4.63510° 0.442 6.89x 107
RSP1 256 12.0 0.02 2.16010°° 0.442 6.32x 1077
RSP1 512 24.0 0.09 4.19810°° 0.442 6.31& 107

RSP1-sub 32 5.1 0.14 2.7430°° 0.441 7.14%10°7
RSP1-sub 64 10.2 0.51 4.8990 8 0.441 6.37% 107
RSP1-sub 128 20.4 0.42 2.0810°° 0.442 6.39% 107
RSP1-sub 256 40.9 0.41 9.9700 4 0.442 6.41x10° 7
RSP1-sub 512 81.8 0.06 7.8710°° 0.442 6.41x10°7

RSP23 64 2.9 0.15 3.75810 4 0.334 12.0x10°’7

RSP23 128 5.7 0.04 5.52010" 4 0.334 8.81& 107”7

RSP23 256 11.4 0.04 2.1230 4 0.334 8.04% 107

RSP23 512 22.8 0.03 1.0%90 4 0.334 8.07x10°

We then performed the same discretization effect investigaing of uniform spheregsimilar to our RSP1 packingWe
tions. As shown in Table Il and Fig. 4, we obtained abelieve our value is more accurate, because we considered
discretization-independemnt at the same value as for the multiple realizations for the pore spaces.

RSP1 packing, which supports our previous conclusion.

Once again, we tried=1 and obtained 19% error at this 3. Reynolds number effects

value. We simulated flow in the RSP1 and RSP23 packings for

Reynolds numbers Re up to 25 to determine),Reelow
which Eq. (1.1) leads to faithful predictions ok. For the
We studied the impact of the domain sizeon x due to  uniform RSP1 packing« computed by Eq(1.1) decreases
the pore-space’s randomness. We used the digital represeoy less than 1% from ReO to Re=5; then the error in-
tations of the RSP1 and RSP23 packings with®&6éxels, creases to 19% for Re22. Our results are consistent with
which yielded a resolution-independeantWe cut both digi- those of Maieret al. [29], who reported a nearly constast
tal pore spaces into nonoverlapping cubic equal-sized subddn a uniform sphere packing for Re8. For the more hetero-
mains. We obtained 8 subdomains with 128xels, 64 with geneous RSP23 packing, inertia becomes important
64°, and 512 with 33, then simulated low Reynolds number earlier—at Re-1.

2. REV

flow (Re<0.04) in each of the subdomains. In reality, x does not depend on Re, rather, Ehl) loses
Figure 5 shows the arithmetic mean and the stand_ard dets validity for increasing Re. We fitted our data to Ergun’s
viation o of k versus the nondimensional domain siz®.  €quation(1.5), which describes flow for ReRe,. We ob-

We considered a domain to be a REVeif/ k,<5%, where ~ tained A=176 for the RSP1 and=155 for the RSP23
Kot IS the permeability of the entire domain. We obtained anPacking, assumin@=0 for Re<5 for RSP1 and Re1 for

REV for the RSP1 packing #/D=10.6. and for the RSp23 RSP23. As Re increases, inertial forces represented b the
= - erm in Eqg. (1.5 gain importance. By fitting the data for
packing ifL/D=16.1. These values are larger than those otI a5 g P y 9

Bosl, Dvorkin, and Nuf16], who foundL/D=2 for a pack- 140

-A- RSP1
160 130 —-O0— RSP23
-O- RSP1 120 T
1508 ~+ RSP1-sub ) :
. ¢ RSP23 < 110 i
1401 g‘émo Al ;
& 130 ¢ P i i
8 : 90
§120 '
: 80
110t §
70
Y il 0 10 20 30
100f  B-H® + + LT
% 20 40 60 80

FIG. 5. Permeabilityx, normalized by the permeability of the
entire domaink,,, versus domain sizé&/D for the RSP1 and
FIG. 4. Ratio of the permeability to «.. versus the number of RSP23 packings, simulated by LB methods. The length of the error

lattice nodes per mean sphere diametefor three porous media, bars stands for twice the standard deviation due to the pore-space’s
simulated by LB methods. randomness.
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= RSP1
¢ RSP23

0 10 20 30

Re=D2pud/n

FIG. 6. Our model(solid lineg for the relation between the
nondimensional pressure drop and the Reynolds number agrees well FIG. 7. Permeabilityx obtained by LB modeling versus the
with our simulationgsymbols and also describes the Darcian flow porosity ¢ and relative standard deviatiGr, of the sphere diam-
regime as opposed to Ergun’s equati{dashed lines eter.

larger Re, we determineB=1.2 for the RSP1 an®8=2.9
for the RSP23 packing. Our results fArand B agree well
with the empirical values by MacDonakt al. [10].

Equation(1.5) however, does not describe the nearby con
stant drop in nondimensional pressure for<fg, in the
Darcian flow regime. Therefore, we suggest

Figure 7 shows the simulateed/D? versus¢ andop, .

We compared our simulation results to both the Carman-
Kozeny and the Rumpf-Gupte relations. The latter is based
‘upon experiments in random sphere packings, one with a
narrow sphere-size distributiosip=0.0945, and two with
broader distribution&p=0.320 and 0.327. The porositiées

> 3 ranged from 0.35 to 0.7. Figure 8 shows how well our simu-
Vp D3¢ A 4B Re Re (3.7 lated values agree with measuredalues within theg and
nUg (1—¢)* RetRey 1— ¢’ ' op ranges of Rumpf and Gupte’s experiments. For media

with porosities and size distributions beyond their experi-
whereA’, B’, and Rg are fit parameters that depend on thementally supported ranges, however, the Rumpf-Gupte rela-
pore geometry. Note that this relation unambiguously definegion deviates significantly from our results. Figure 8 also
Re. Figure 6 shows a good agreement between our newuggests that the Carman-Kozeny relation underprediofs
correlation, given by Eq(3.2), and the simulated data in sphere packings, because both the empirical Rumpf-Gupte
both the Darcian and non-Darcian regime for both the RSP%elation and our simulations yield largervalues. For lower
and RSP23 packing. Table Il shows the fit parameters. Reporosities, the Carman-Kozeny relation deviates significantly
lating A", B’, and Rg to the porous medium properties from our simulation results. This finding is consistent with
would have required simulations in more media and wasg,7].
beyond the scope of this paper. We fitted our simulation results to a correlation model

derived from the Rumpf-Gupte relatigt.4):
4. Correlation model for permeability
From the studies in our most nonuniform packing with «

op=0.66, we found that the error due to finite discretization — =B,¢%2, (3.9
was smaller than 0.5%, >12, and the error due to finite D3

domain size was smaller than 5%LifD >16. Based on this
information, we chose subsets of the 25 sphere packings and

-3
digitized them such that these conditions were fulfilled. By 3X1 Rumpi—Gupte
dimensional analysis, the permeability of a packing is given 2 5/l === Carman-Kozeny
by
K
— =1(¢,0p). (3.3
D2
TABLE llIl. Fit parameters for our model for the relation be-
tween the nondimensional pressure drop and Re. 8
3 0.35 N 0.4 0.45 0.5
RSP1 RSP23
FIG. 8. Comparison between LB simulations and empirical re-
A’ 175.50 155.12 lations. Solid circles indicate packings with €&.Fy<0.33. The
B’ 1.83 3.81 gray area marks those porosities, which are supported experimen-
Re, 36.73 10.89 tally by Rumpf and Gupte. The diamond stands for an LB simula-

tion performed by Maieet al. in a uniform sphere packing.
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TABLE V. Fit parameters of the permeability functiai3.5 1
including 95% confidence intervals % © RSP
including () i intervals. 08l o © RSP23
. <&
By 0.0397+0.0058 o
B2 3.9513+0.1610 i I
B3 8.3000t 0.5215 I04 o
Ba 2.2335-0.1249 ’ o ©
<&
0.2 ° e
o ¢
<&
where 8, and B, are fit parameters. We used the Gauss- 0 %6 YT
Newton algorithm to minimize the sum of the quadratic dif- 0 05 .5 1 15

ferences between simulated and fittedvalues. The fit re- _ S
sults, however, were not optimal. By expressing the FIG. 10. Morp_hologmal pore-size distributidf(r) of the RSP1
correlation in terms ofD and Gp—as suggested by Eq. and RSP23 packings.

(3.3—and not only in terms ob,, we achieved much bet- o ) ) )
ter results. Like Rumpf and Gupte, we assumed that th&ubdivided these networks into 8 subdomains with gare
right-hand side of Eq(3.3) can be separated with respect to bodies, 64 with 18 512 with &, and 4096 with 4, then

¢ and the remaining fit parameters. We posited simulated flow in each of the networks. Then, we obtained
the mean and standard deviation of the simulatedor
K -8 equal-sized subdomains.
§::31¢B2(1+53‘TD4)' (3.9 Using the same criteria as for LB modeling, networks

with at least 8 pore bodies yield a REV. Figure 11 shows

with four fit parameters. The sum of quadratic di1‘ferencesthalt L/D=6.7 yields a REV for the RSP1,/D>10.4 for

between the simulated and fittedvalues based on our new R,SP23 packing, Wh_iCh is about 40% Ie;s than the REV ob-
correlation was ten times less than on E8.4). Table IV tained by LB modeling. We expected disagreement between

lists the fitted parameters, and Fig. 9 compares the correl0th pore-scale modeling approaches, because a pore-
tion model to our simulated data. network model does not represent all aspects of the sphere-

packing’s morphology, such as the shape of the pore space
, and spatial correlations.
C. Pore-network modeling

1. Calibration 3. Absolute permeability values

We performed flow simulations in pore networks for the  \y/e compared the pore-network modeling results with
RSP1 and RSP23 packings. For calibrating the pore-networkom B modeling. Assuming that LB modeling faithfully

models, we determined the morphological pore-size diStribUpredictsK, Fig. 11 shows that the pore-network model un-
tions of the sphere packings, shown in Fig. 10, and the sp&jerestimates by up to 40%. Nonetheless, our pore-network
cific Euler numbery, , shown in Table V. Table V also cgjipration approach still yields an acceptable prediction for
shows the properties of the calibrated networks. x when compared to other approach@s:Fischer and Celia
[20], who calibrated their network by matching simulated
2. REV and measured capillary pressure-saturation curves, obtained
Because of the pore network’s randomness, the networgimilar errors;(2) Vogel and RotH{23], who calibrated their
sizelL has an effect ow. Similar to LB modeling, we studied network by mapping a three-dimensional representation of a
this effect by generating cubic networks with 64 pore bodiegpore space onto a pore-throat network, simulated permeabili-
along every direction for the RSP1 and RSP23 packings. Wées which differed by an order of magnitude from experi-
mental values.
%107 We also compared the simulatedwith the predictions
o Simulated data from the EMA. Figure 11 shows deviations smaller than 5%
— curve fitting for both packings. This agreement was obtained, because the
1.5 ] calibrated networks are well above the percolation threshold,
with Z=5.9 for the RSP1 and= 6.0 for the RSP23 packing.

-

%)/ [14+B, (o / D)4

TABLE V. Calibration results.

(x/D
o
(4]

RSP1 RSP23

() 0.01 o.ozd)ﬁz 0.03 0.04 005 X, (Mm™3) —407 -128
z 5.9 6.0
FIG. 9. Our correlation model for the permeability of sphereT A 0.3395 0.3130
packings describes LB modeling results accurately.
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80 = RSP sruladed of ;phere packings with ng-n.ormal_sphere-sme distribution.
- A RSP1EMA This model allows an estimation afin terms of the poros-

-0 RSP23 simulated ity, and the mean and standard deviation of the sphere diam-
700 > BoRad EMa eter. These quantities lead to a better fitting of our results

(%)

than the surface mean diameter and porosity alone.

(4) Compared with LB modeling, which presumably pre-
dicts « faithfully, pore-network modeling underestimates
by up to 40% due to a loss of information when mapping the
sphere packing onto the pore-network geometry. This under-
50 estimation is consistent with the fact thaincreases with the

0 T 150 pore-space’s correlation lengfl38], because our network
calibration does not account for spatial correlations of the

FIG. 11. Permeability« obtained by pore-network modeling pore size, which intrinsically exist in sphere packings. Nev-
normalized byxifrom LB modeling versus the nondimensional ertheless, our calibration approach still predieteell com-
domain lengttL/D. The length of the error bar stands for twice the pared to other published calibration approaches.
standard deviation ok due to the pore-space’s randomness. (5) An LB approach is computationally much more de-
manding than a pore-network approach because of memory
and CPU time requirements. Simulating flow in a REV of the

(1) The LB modeling of laminar duct flow agrees well RSP1 packing, )‘or example, required 20 total CPU hours on
with the analytical solution. Furthermore, we obtain good@n IBM-SP2 using LB modeling and 128 processors as op-
agreement between LB simulations and the empiricaposed_to a few seconds on a SGI Origin 2_000 using netwo_rk
Rumpf-Gupte relation for the permeabilikyof sphere pack- modeling anq one processor. For these S|mulat|ons, the size
ings for those porosity values that are experimentally sup®f the numerical domain corresponded t°0p8_3re bodies for
ported. LB modeling also agrees well with the Ergun equaPore network modeling and 1200 spheres discretized by 128
tion for higher Reynolds number flow. We conclude that LB VOxels for LB modeling. Our pore-network modeling ap-
modeling faithfully describes the flow process and that ouroach, however, needs a morphological analysis of the
simulated sphere packings represent the experimental sphetghere packing, which currently requires several days CPU
packings well. time on a SGI Origin 2000 using one processor.

(2) The relaxation timer has an essential impact on the
accuracy achieved. Although= 0.8 requires more iterations
to achieve convergence thar=1.0, the results are more
accurate. This is important in particular for LB simulations,  This work was supported by National Science Foundation
where memory limitations often do not allow a fine discreti- (NSF) Grant No. EAR-9901660, National Institute of Envi-
zation. ronmental Health SciencéNIEHS) Grant No. 5 P42

(3) We find that the Carman-Kozeny relation underesti-ES05948-02, and a URC grant from the University of North
mates thex of sphere packings. We also observe deviation€Carolina. We also would like to thank the North Carolina
between LB modeling and the empirical Rumpf-Gupte rela-Super Computing CentdNCSQO for supercomputing time
tion for those porosity values lacking experimental supportand Marc ReedNCSQ for useful discussions and assistance
Using LB simulations, we suggest a correlation modelfor with optimizing of our codes.
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