
PHYSICAL REVIEW E, VOLUME 64, 066702
Pore-scale modeling of saturated permeabilities in random sphere packings
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~Received 22 March 2001; published 20 November 2001!

We use two pore-scale approaches, lattice-Boltzmann~LB! and pore-network modeling, to simulate single-
phase flow in simulated sphere packings that vary in porosity and sphere-size distribution. For both modeling
approaches, we determine the size of the representative elementary volume with respect to the permeability.
Permeabilities obtained by LB modeling agree well with Rumpf and Gupte’s experiments in sphere packings
for small Reynolds numbers. The LB simulations agree well with the empirical Ergun equation for intermediate
but not for small Reynolds numbers. We suggest a modified form of Ergun’s equation to describe both low and
intermediate Reynolds number flows. The pore-network simulations agree well with predictions from the
effective-medium approximation but underestimate the permeability due to the simplified representation of the
porous media. Based on LB simulations in packings with log-normal sphere-size distributions, we suggest a
permeability relation with respect to the porosity, as well as the mean and standard deviation of the sphere
diameter.

DOI: 10.1103/PhysRevE.64.066702 PACS number~s!: 02.70.2c, 47.55.Mh, 47.15.Gf
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I. INTRODUCTION

Pore-scale models improve our understanding of flow
transport phenomena in porous media but can also be us
obtain macroscale constitutive relationships, which are n
essary to close continuum theories for these phenomena@1#.
Using pore-scale models as quantitative predictive to
however, is not straightforward because the numerical
mains are limited in size by finite computational resource
microscopic description of the pore-space geometry
needed, and the numerical pore-scale model needs to b
rametrized. This paper deals with the prediction of sing
phase flow using lattice-Boltzmann~LB! and pore-network
models. Faithful modeling of single-phase flow is, for e
ample, important for species transport models, the predic
capabilities of which require an accurate velocity field.

On the macroscale, single-phase flow in porous medi
low Reynolds numbers is described by Darcy’s law—or to
more accurate, by its generalization to three-dimensio
flow in isotropic media@2#:

ud52
k

h
~¹p1rg¹z!, ~1.1!

whereud is the Darcy velocity or the specific discharge,k
the saturated permeability,h the dynamic viscosity,p the
fluid pressure,g the gravitational acceleration, andz the ver-
tical coordinate. Because of the complicated geometry
natural pore spaces, analytical forms for the constitutive
lation k are not available. A great deal of effort has be
devoted to empirical relationships amongk and porous me-
dium properties. The Carman-Kozeny@3# is a widely used
relationship, which givesk for granular media consisting o
arbitrarily shaped particles:

kCK5
D̄2

2
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f3

~12f!2 , ~1.2!
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where

D̄25

E D3N~D !dD

E D2N~D !dD

~1.3!

is the surface average diameter,f the porosity, andN(D) the
distribution function of the grain diameterD. The Blake-
Kozeny relation @4# has the same form as the Carma
Kozeny, but the constant differs by as much as 20%. Rum
and Gupte@5# measuredk in random sphere packings an
obtained the empirical relation

kRG5
D̄2

2

5.6
f5.5. ~1.4!

These relations’ shortcomings include~1! the limited accu-
racy of the Carman-Kozeny relation in predictingk for the
special case of sphere packings,~2! the breakdown of the
Carman-Kozeny relation for low and high porosities@6,7#,
and ~3! the lack of broad experimental support for th
Rumpf-Gupte relation.

Darcy’s law loses its validity if Re exceeds a critical valu
Re0 that ranges between 0.1 and 75, depending on the
structure and the definition of Re0 @8#. As Re increases, ther
is a transition from creeping flow to another laminar flo
regime, where inertial forces become important@9#. Many
correlations describing flow for Re.Re0 have been presente
in the literature. The best known relationship is Ergun
equation, which was obtained in uniformly packed colum
for intermediate values of Re. It can be formulated as

¹p

hud

D̄2
2f3

~12f!2 5A1B
Re

12f
, ~1.5!

whereA5150 andB51.75 @2#. MacDonaldet al. @10# sug-
gestedA5180 andB to lie between 1.8 and 4.0 in order t
©2001 The American Physical Society02-1
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match data from a variety of porous media. After our know
edge, a correlation describing flow both in the Darcian (
,Re0) and non-Darcian (Re.Re0) regime has not been pre
sented yet.

Pore-network@1# and LB modeling@11# are considered
useful for simulating flow phenomena in porous media.
methods simulate flow by describing the movement and
lisions of quasiparticles along a lattice. LB models have b
used to investigate various aspects of single-phase flow
porous media, including flow through sphere packin
@12,13#, cemented media@14#, and media with randomly
placed identical obstacles@15#, critical porosities@6#, the rep-
resentative elementary volume~REV! for permeability
@16,17#, and higher Reynolds number flow@18#. But thor-
ough investigations on the REV’s, as well as a compari
between simulations and existing permeability relationsh
have not yet been presented for a broad range of sp
packings.

Pore-network models are simplified representations of
rous media that usually consist of analogs of pore bodies
throats, along with a description of how the pore bodies
connected via the pore throats. The main difficulty in us
pore-network models in a quantitative predictive sense lie
choosing the geometric shape, sizes, locations, and orie
tions of the pore bodies and throats. Quantitative predicti
for k require a calibration of the network geometry, whi
can be accomplished by estimating the pore sizes from m
sured capillary pressure-saturation curves@19,20#, deriving
the network from a detailed representation of a sphere p
ing, using a subdivision of the packing into tetrahedra@21#,
mapping a three-dimensional digital representation of
pore space onto the statistical properties of a pore netw
@22,23#, or identifying the actual positions and sizes of po
bodies and throats from a three-dimensional digital repres
tation @24#. Although methods for estimating pore sizes fro
grain-size data exist@25,26#, an approach that predictsk
from a network model, based only on grain-size data a
porosity, has not been presented@1#.

The objectives of this work are~1! to implement and
evaluate an LB and a pore-network model to simulate fl
through sphere packings,~2! to find a statistically supported
REV for packings with varying uniformity, using both mod
els, ~3! to investigate the transition region between Darc
and non-Darcian flow,~4! to compare LB simulations with
existing empirical relations for permeability for a broa
range of packings, and~5! to formulate a correlation function
for the permeability in sphere packing with log-norm
sphere-size distribution.

II. NUMERICAL METHODS

A. Porous media

Modeling flow in porous media requires detailed inform
tion about the pore structure, which necessitates either sm
scale experimental measurements using, for exam
nuclear magnetic resonance~NMR! or serial sections, or a
theoretical approach to provide a meaningful representat
The experimental measurements, however, are ti
consuming and expensive, so the use of simulated po
06670
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media is conceptually appealing. Yang, Miller, and Turc
iver @27# developed a theoretical approach for packing
large number of random-size nonoverlapping spheres.
use log-normal sphere-size distributions, because many n
ral porous media can be described by such a distribution@9#.
The simulated porous media are generated by using ea
quantifiable macroscopic measures of a porous medium
input parameters: the meanD̄ and standard deviationsD of
the sphere diameterD, and the porosityf as well.

B. Lattice-Boltzmann simulation

1. Model structure

We implemented a three-dimensional LB model as
scribed in the literature@28,29#. This model has 15 fixed
velocity vectorseW i , wherei 51,2, . . . ,15, andincludes a rest
particle (i 515). Figure 1 shows the lattice structure. T
distribution function f i(xW ,t) stands for the probability of
finding a particle with velocityeW i at locationxW and timet.
The fluid density is given byr85S i f i and the velocity by
uW 85S i f ieW i /r8. Evolution in time is ruled by

f i~xW1eW i ,t11!2 f i~xW ,t !5
1

t
@ f i

~eq!~xW ,t !2 f i~xW ,t !#.

~2.1!

The left-hand side of this equation represents the interact
free movement of the particles. Particle collisions are
scribed on the right-hand side, with the approximation o
single-rate relaxation to the equilibrium distribution functio
f i

(eq) , which depends locally onuW 8 andr8. If this function is
chosen properly, Eq.~2.1! is equivalent to a nondimensiona
Navier-Stokes equationduW 8/dt52(1/r8)¹W p81n8¹W 2uW 8 in
the limit of incompressible flow, where the kinematic visco
ity is given by n85(2t21)/6 and the pressure byp8
53r8/8 @28,30#.

The no-slip boundary condition at the solid surface
implemented by a bounce-back schemef j (xW ,t11)2 f i(xW ,t)
51/t@ f i

(eq)(xW ,t)2 f i(xW ,t)#, where j is related toi by eW j5
2eW i @29#. This scheme assumes the wall with the no-s
boundary condition to be located midway between the so
node and the fluid node, where the particle originates. At
inlet and outlet, we prescribe constant densitiesr18 andr28 by
implementing the pressure boundary conditions as descr
in Refs.@28,30#.

FIG. 1. Lattice structure of the LB model with 15 velocity d
rections per lattice node.
2-2
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PORE-SCALE MODELING OF SATURATED . . . PHYSICAL REVIEW E64 066702
One can determine important macroscopic measure
the flow field from the microscopic nondimensional va
ables. The permeability isk58n8L2r8ud8/(3NDr8), where
L is the length along the flow direction,N the number of
lattice nodes along the flow direction,ud8 the nondimensiona
Darcy velocity, andDr85r182r28 . The Reynolds number is

Re5ud8D̄2N/(n8L). Figure 2 demonstrates part of a digital p
rous medium with the steady-state flow velocity fielduW 8 ob-
tained by a LB simulation.

2. Validation of an LB model

To validate our LB code, we simulated steady-state la
nar flow in a duct with a square cross section.
uSxWuu8(xW ,t)u/SxWuu8(xW ,t150)u21u<1026; we considered
the simulation converged. We studied convergence with
spect to the relaxation timet and the duct widthm measured
in lattice units. We achieved second-order convergence
described elsewhere@28,30,29#. For t51, the relative error
between the simulated and analytical velocity in the d
center~whereu8 is maximum! decreased from 39% form
53 to 1% for m517, consistent with the investigation o
Maier et al. @29#. For t50.8, which usually requires mor
time steps to achieve convergence, we obtained 11% rela
error for m53 and 0.5% form517. Therefore, we usedt
50.8 for all remaining simulations. Zou and He@28# pre-
sented a more complete investigation on the impact oft. Our
results show that, with sufficient spatial resolution, a L
model accurately simulates flow processes.

C. Pore-network modeling

1. Model structure

Our pore-network model consists of cubic pore bod
connected by pore throats with square cross sections. E

FIG. 2. ~Color! Porous medium with velocity field obtained b
LB modeling. Blue: solid phase. The size of the red cone indica
the magnitude of the fluid velocity.
06670
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pore body is connected to at most six neighboring bodies
pore throats along the lattice axes; the maximum coord
tion number isZ056. We obtained coordination numbe
Z,6 by cutting the pore throats randomly. The network
periodic in both horizontal directions. The top and bottom
the network are connected to constant pressure reservoi

Incompressible single-phase flow of a viscous fluid
modeled as described by Fenwick and Blunt@31#. The pres-
sure drop between the two adjacent bodiesi and j is pi2pj
5Qi j /gi j , whereQi j is the flow rate andgi j the conduc-
tance between pore bodiesi and j. gi j depends on the loca
network geometry and the dynamic viscosityh. Note that
pressure drops occur in both pore throats and bodies.

Applying the continuity equationS jQi j 50, at all pore
bodies except those on both flow boundaries where press
are fixed, yields a sparse symmetric system of linear eq
tions. The unknown pressures are determined using the it
tive conjugate gradient method. We compute the total fl
rate through the network and determinek using Eq.~1.1!.
Figure 3 illustrates a flow simulation in a pore network.

2. Pore-network calibration

For calibrating the pore networks, we mapped the dig
pore space onto the size distributions of the pore bodies
throats and onto the coordination numberZ of the network.
We first determined integral geometric quantities of t
sphere packings, the morphological pore-size distribut
and the genus, and used these data to calibrate the netw
The calibration approach is described in detail in Hilpe
Glantz, and Miller@32#, who used it to obtain good predic
tions for hysteretic capillary pressure-saturation curves.
will only briefly describe its methodology.

The cumulative morphological pore-size distribution

F~r !5
Vol@ø~SxW~r !:SxW~r !,P!#

Vol@P#
~2.2!

s

FIG. 3. ~Color! Simulation of a single-phase flow in a por
network. The shading of the pores stands for the pressure, w
decreases from the bottom to the top of the network. The color
the throats show the normalized flow rates.
2-3
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CHONGXUN PAN, MARKUS HILPERT, AND CASS T. MILLER PHYSICAL REVIEW E64 066702
quantifies that fraction of the pore spaceP that is at least as
large as a sphereS of radiusr. The subscriptxW denotes the
translation ofSby the vectorxW . F(r ) can be readily obtained
for digital porous media@33#. A measure for the connectivity
of a three-dimensional geometric object is the Euler-Poinc´
characteristicx @34#. For sphere packings subject to gravit
x of the pore spaceP is

x~P!512G~P!, ~2.3!

where the genusG is the maximum number of fully penetra
ing cuts that one can make throughP without producing
more separate components.x can be readily obtained fo
digital pore spaces by counting the corners, edges, surfa
and cubes ofP @35#.

We make a range of assumptions to reduce the numbe
parameters characterizing the network geometry:~1! normal
pore-body and pore-throat size distributions,~2! the mean
pore-body size as twice the mean pore-throat size,~3! equal
relative standard deviations for the pore throats and bod
~4! nonoverlapping pore-body and throat size distributio
and ~5! strong spatial correlations among pore-throat a
pore-body sizes. The lattice constant is given byl5@(1
2Z/2)/xv#1/3, because we require the network to possess
same Euler number per volumexv , as the sphere packing.

The assumptions above leave us with two calibration
rameters: the coordination numberZ and the nondimensiona
mean pore-body radiusr̄ b /l, which solely determines the
pore-size distributions. We determineZ and r̄ b by minimiz-
ing the quadratic error betweenF(r ) of the digital porous
medium and the pore network using a constrained optim
tion algorithm@36#.

3. Effective-medium approximation

For pore networks, the effective-medium approximati
~EMA! can be used to estimatek without solving any flow
equations. The EMA substitutes the heterogeneous netw
with a uniform one, where all pore connections possess
same effective conductancege , which satisfies the integra
equation

E
0

`

N~g!
g2ge

g1ge~Z0/221!
dg50, ~2.4!

whereN(g) is the distribution function of the pore conne
tion conductancesg @37#. Note thatN(g) represents also th
pore throats, which have been cut (g50) to achieve net-
works with Z,Z0 . The permeability is then given byk
5geh/l.

III. NUMERICAL RESULTS

A. Porous media

We simulated 25 different sphere packings using the co
puter code developed by Yang, Miller, and Turcoliver@27#.
The sphere packings had log-normal grain-size distributio
for which D̄25D̄@11(sD /D̄)2#2. To achieve reliable pack
ings, we simulated packings with at least 10 000 spheres.
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packings were statistically described byD̄, sD , andf. We
did not prescribe spatial correlations for the sphere sizes.
porosityf ranged from 0.33 to 0.45 and the relative stand
deviation of the grain size,s̃D5sD /D̄, from 0 to 0.66.

To estimate the error ink caused by a finite discretizatio
and domain size, we thoroughly investigated two of the
packings, the most uniform~RSP1! with s̃D50.005 and the
least uniform~RSP23! with s̃D50.65. Table I lists the prop-
erties of these packings, whereL is the domain length andNg
the number of spheres.

B. LB modeling

1. Discretization effects

We simulated low Reynolds number flow (Re,1)
through the RSP1 and RSP23 packings and varied the n
ber of voxelsm along each dimension of the cubic domai
Let km denote the permeability obtained at discretizationm.
km converges tok` as m→`. We considered a levelm to
provide a discretization-independentk if ukm2k`u/k`

,0.5%.
We used Richardson’s extrapolation to estimatek` by

assuming thatkm2k`;(1/m)n, wheren is the order of the
numerical convergence. We then estimatedk` from the
simulations at levelm1 and a finer levelm2 :

k`'
~m2 /m1!nkm2

2km1

~m2 /m1!n21
. ~3.1!

From the results in Table II, we determinedn52.02 for the
RSP1 andn52.05 for the RSP23 packing. Those values
veal that second-order convergence can be achieved,
only for flow in simple geometries, but also for flow in po
rous media, consistent with the observation of Maieret al.
@29#. Based onk256 and k512, we calculatedk`56.311
31027 cm2 for RSP1 andk`58.08231028 cm2 for RSP23.
For both packings,k becomes discretization independent
m>256. Expressed in terms of the number of lattice nod
per mean sphere diameterz, this condition becomesz.12,
as shown in Fig. 4.

This result differs from the investigation of Maieret al.
@29#, who obtainedz536.6 for a packing of 222 uniform
spheres. They observed 30% error compared withk` at the
same discretization level at which we reached resoluti
independent results. This is likely due to the fact that th
usedt51.

To verify our findings, we considered a subset of t
RSP1 packing containing 262 spheres labeled as RSP1

TABLE I. Sphere-packing realizations for the RSP1 and RSP
porous media.

RSP1 RSP23

D̄ ~mm! 0.199 9660.0011 0.192 4660.1245

L ~mm! 4.250 6.192
f 0.442 0.334
Ng 103 28 143 80
2-4
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TABLE II. Results of the investigation on the dependence of the permeabilityk on the discretization levelm for t50.8.

Medium m z Re ud8 f k ~cm2!

RSP1 64 3.0 0.04 1.28731024 0.443 9.19031027

RSP1 128 6.0 0.02 4.63531025 0.442 6.89031027

RSP1 256 12.0 0.02 2.10031025 0.442 6.32131027

RSP1 512 24.0 0.09 4.19531025 0.442 6.31431027

RSP1-sub 32 5.1 0.14 2.74331023 0.441 7.14531027

RSP1-sub 64 10.2 0.51 4.89931023 0.441 6.37931027

RSP1-sub 128 20.4 0.42 2.06731023 0.442 6.39331027

RSP1-sub 256 40.9 0.41 9.97031024 0.442 6.41031027

RSP1-sub 512 81.8 0.06 7.87731025 0.442 6.41031027

RSP23 64 2.9 0.15 3.75831024 0.334 12.0131027

RSP23 128 5.7 0.04 5.52031024 0.334 8.81831027

RSP23 256 11.4 0.04 2.12331024 0.334 8.04731027

RSP23 512 22.8 0.03 1.01931024 0.334 8.07331027
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We then performed the same discretization effect invest
tions. As shown in Table II and Fig. 4, we obtained
discretization-independentk at the samez value as for the
RSP1 packing, which supports our previous conclusi
Once again, we triedt51 and obtained 19% error at thisz
value.

2. REV

We studied the impact of the domain sizeL on k due to
the pore-space’s randomness. We used the digital repre
tations of the RSP1 and RSP23 packings with 2563 voxels,
which yielded a resolution-independentk. We cut both digi-
tal pore spaces into nonoverlapping cubic equal-sized su
mains. We obtained 8 subdomains with 1283 voxels, 64 with
643, and 512 with 323, then simulated low Reynolds numbe
flow (Re<0.04) in each of the subdomains.

Figure 5 shows the arithmetic mean and the standard
viation sk of k versus the nondimensional domain sizeL/D̄.
We considered a domain to be a REV, ifsk /k tot,5%, where
k tot is the permeability of the entire domain. We obtained
REV for the RSP1 packing ifL/D̄>10.6, and for the RSP23
packing if L/D̄>16.1. These values are larger than those
Bosl, Dvorkin, and Nur@16#, who foundL/D̄>2 for a pack-

FIG. 4. Ratio of the permeabilityk to k` versus the number o
lattice nodes per mean sphere diameterz, for three porous media
simulated by LB methods.
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ing of uniform spheres~similar to our RSP1 packing!. We
believe our value is more accurate, because we consid
multiple realizations for the pore spaces.

3. Reynolds number effects

We simulated flow in the RSP1 and RSP23 packings
Reynolds numbers Re up to 25 to determine Re0, below
which Eq. ~1.1! leads to faithful predictions ofk. For the
uniform RSP1 packing,k computed by Eq.~1.1! decreases
by less than 1% from Re'0 to Re55; then the error in-
creases to 19% for Re522. Our results are consistent wit
those of Maieret al. @29#, who reported a nearly constantk
in a uniform sphere packing for Re<3. For the more hetero
geneous RSP23 packing, inertia becomes impor
earlier—at Re'1.

In reality,k does not depend on Re, rather, Eq.~1.1! loses
its validity for increasing Re. We fitted our data to Ergun
equation~1.5!, which describes flow for Re.Re0. We ob-
tained A5176 for the RSP1 andA5155 for the RSP23
packing, assumingB50 for Re,5 for RSP1 and Re,1 for
RSP23. As Re increases, inertial forces represented by tB
term in Eq. ~1.5! gain importance. By fitting the data fo

FIG. 5. Permeabilityk, normalized by the permeability of the

entire domaink tot , versus domain sizeL/D̄ for the RSP1 and
RSP23 packings, simulated by LB methods. The length of the e
bars stands for twice the standard deviation due to the pore-spa
randomness.
2-5
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larger Re, we determinedB51.2 for the RSP1 andB52.9
for the RSP23 packing. Our results forA and B agree well
with the empirical values by MacDonaldet al. @10#.

Equation~1.5! however, does not describe the nearby co
stant drop in nondimensional pressure for Re!Re0 in the
Darcian flow regime. Therefore, we suggest

¹p

hud

D̄2
2f3

~12f!2 5A81B8
Re

Re1Re0

Re

12f
, ~3.2!

whereA8, B8, and Re0 are fit parameters that depend on t
pore geometry. Note that this relation unambiguously defi
Re0. Figure 6 shows a good agreement between our n
correlation, given by Eq.~3.2!, and the simulated data i
both the Darcian and non-Darcian regime for both the RS
and RSP23 packing. Table III shows the fit parameters.
lating A8, B8, and Re0 to the porous medium propertie
would have required simulations in more media and w
beyond the scope of this paper.

4. Correlation model for permeability

From the studies in our most nonuniform packing w
s̃D50.66, we found that the error due to finite discretizati
was smaller than 0.5%, ifz.12, and the error due to finite
domain size was smaller than 5% ifL/D̄.16. Based on this
information, we chose subsets of the 25 sphere packings
digitized them such that these conditions were fulfilled.
dimensional analysis, the permeability of a packing is giv
by

k

D̄2
5 f ~f,s̃D!. ~3.3!

FIG. 6. Our model~solid lines! for the relation between the
nondimensional pressure drop and the Reynolds number agrees
with our simulations~symbols! and also describes the Darcian flo
regime as opposed to Ergun’s equation~dashed lines!.

TABLE III. Fit parameters for our model for the relation be
tween the nondimensional pressure drop and Re.

RSP1 RSP23

A8 175.50 155.12
B8 1.83 3.81
Re0 36.73 10.89
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Figure 7 shows the simulatedk/D̄2 versusf and s̃D .
We compared our simulation results to both the Carm

Kozeny and the Rumpf-Gupte relations. The latter is ba
upon experiments in random sphere packings, one wit
narrow sphere-size distributions̃D50.0945, and two with
broader distributionss̃D50.320 and 0.327. The porositiesf
ranged from 0.35 to 0.7. Figure 8 shows how well our sim
lated values agree with measuredk values within thef and
s̃D ranges of Rumpf and Gupte’s experiments. For me
with porosities and size distributions beyond their expe
mentally supported ranges, however, the Rumpf-Gupte r
tion deviates significantly from our results. Figure 8 al
suggests that the Carman-Kozeny relation underpredictsk of
sphere packings, because both the empirical Rumpf-Gu
relation and our simulations yield largerk values. For lower
porosities, the Carman-Kozeny relation deviates significan
from our simulation results. This finding is consistent wi
@6,7#.

We fitted our simulation results to a correlation mod
derived from the Rumpf-Gupte relation~1.4!:

k

D̄2
2

5b1fB2, ~3.4!

ell FIG. 7. Permeabilityk obtained by LB modeling versus th
porosityf and relative standard deviations̃D of the sphere diam-
eter.

FIG. 8. Comparison between LB simulations and empirical
lations. Solid circles indicate packings with 0.1,s̃D,0.33. The
gray area marks those porosities, which are supported experim
tally by Rumpf and Gupte. The diamond stands for an LB simu
tion performed by Maieret al. in a uniform sphere packing.
2-6
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where b1 and b2 are fit parameters. We used the Gau
Newton algorithm to minimize the sum of the quadratic d
ferences between simulated and fittedk values. The fit re-
sults, however, were not optimal. By expressing t
correlation in terms ofD̄ and s̃D—as suggested by Eq
~3.3!—and not only in terms ofD̄2 , we achieved much bet
ter results. Like Rumpf and Gupte, we assumed that
right-hand side of Eq.~3.3! can be separated with respect
f and the remaining fit parameters. We posited

k

D̄2
5b1fb2~11b3s̃D

b4!, ~3.5!

with four fit parameters. The sum of quadratic differenc
between the simulated and fittedk values based on our new
correlation was ten times less than on Eq.~3.4!. Table IV
lists the fitted parameters, and Fig. 9 compares the corr
tion model to our simulated data.

C. Pore-network modeling

1. Calibration

We performed flow simulations in pore networks for t
RSP1 and RSP23 packings. For calibrating the pore-netw
models, we determined the morphological pore-size distri
tions of the sphere packings, shown in Fig. 10, and the s
cific Euler numberxv , shown in Table V. Table V also
shows the properties of the calibrated networks.

2. REV

Because of the pore network’s randomness, the netw
sizeL has an effect onk. Similar to LB modeling, we studied
this effect by generating cubic networks with 64 pore bod
along every direction for the RSP1 and RSP23 packings.

FIG. 9. Our correlation model for the permeability of sphe
packings describes LB modeling results accurately.

TABLE IV. Fit parameters of the permeability function~3.5!
including 95% confidence intervals.

b1 0.039760.0058
b2 3.951360.1610
b3 8.300060.5215
b4 2.233560.1249
06670
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rk

s
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subdivided these networks into 8 subdomains with 323 pore
bodies, 64 with 163, 512 with 83, and 4096 with 43, then
simulated flow in each of the networks. Then, we obtain
the mean and standard deviation of the simulatedk for
equal-sized subdomains.

Using the same criteria as for LB modeling, networ
with at least 83 pore bodies yield a REV. Figure 11 show

that L/D̄>6.7 yields a REV for the RSP1,L/D̄>10.4 for
RSP23 packing, which is about 40% less than the REV
tained by LB modeling. We expected disagreement betw
both pore-scale modeling approaches, because a p
network model does not represent all aspects of the sph
packing’s morphology, such as the shape of the pore sp
and spatial correlations.

3. Absolute permeability values

We compared the pore-network modeling results withk`

from LB modeling. Assuming that LB modeling faithfully
predictsk, Fig. 11 shows that the pore-network model u
derestimatesk by up to 40%. Nonetheless, our pore-netwo
calibration approach still yields an acceptable prediction
k when compared to other approaches:~1! Fischer and Celia
@20#, who calibrated their network by matching simulate
and measured capillary pressure-saturation curves, obta
similar errors;~2! Vogel and Roth@23#, who calibrated their
network by mapping a three-dimensional representation
pore space onto a pore-throat network, simulated permea
ties which differed by an order of magnitude from expe
mental values.

We also compared the simulatedk with the predictions
from the EMA. Figure 11 shows deviations smaller than 5
for both packings. This agreement was obtained, because
calibrated networks are well above the percolation thresh
with Z55.9 for the RSP1 andZ56.0 for the RSP23 packing

FIG. 10. Morphological pore-size distributionF(r ) of the RSP1
and RSP23 packings.

TABLE V. Calibration results.

RSP1 RSP23

xv ~mm23! 2407 2128
Z 5.9 6.0
r̄ bl 0.3395 0.3130
2-7
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IV. DISCUSSION AND CONCLUSIONS

~1! The LB modeling of laminar duct flow agrees we
with the analytical solution. Furthermore, we obtain go
agreement between LB simulations and the empir
Rumpf-Gupte relation for the permeabilityk of sphere pack-
ings for those porosity values that are experimentally s
ported. LB modeling also agrees well with the Ergun eq
tion for higher Reynolds number flow. We conclude that L
modeling faithfully describes the flow process and that
simulated sphere packings represent the experimental sp
packings well.

~2! The relaxation timet has an essential impact on th
accuracy achieved. Althought50.8 requires more iteration
to achieve convergence thant51.0, the results are mor
accurate. This is important in particular for LB simulation
where memory limitations often do not allow a fine discre
zation.

~3! We find that the Carman-Kozeny relation underes
mates thek of sphere packings. We also observe deviatio
between LB modeling and the empirical Rumpf-Gupte re
tion for those porosity values lacking experimental supp
Using LB simulations, we suggest a correlation model fok

FIG. 11. Permeabilityk obtained by pore-network modelin
normalized byk` from LB modeling versus the nondimension

domain lengthL/D̄. The length of the error bar stands for twice th
standard deviation ofk due to the pore-space’s randomness.
y
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of sphere packings with log-normal sphere-size distributi
This model allows an estimation ofk in terms of the poros-
ity, and the mean and standard deviation of the sphere di
eter. These quantities lead to a better fitting of our res
than the surface mean diameter and porosity alone.

~4! Compared with LB modeling, which presumably pr
dicts k faithfully, pore-network modeling underestimatesk
by up to 40% due to a loss of information when mapping
sphere packing onto the pore-network geometry. This und
estimation is consistent with the fact thatk increases with the
pore-space’s correlation length@38#, because our network
calibration does not account for spatial correlations of
pore size, which intrinsically exist in sphere packings. Ne
ertheless, our calibration approach still predictsk well com-
pared to other published calibration approaches.

~5! An LB approach is computationally much more d
manding than a pore-network approach because of mem
and CPU time requirements. Simulating flow in a REV of t
RSP1 packing, for example, required 20 total CPU hours
an IBM-SP2 using LB modeling and 128 processors as
posed to a few seconds on a SGI Origin 2000 using netw
modeling and one processor. For these simulations, the
of the numerical domain corresponded to 83 pore bodies for
pore network modeling and 1200 spheres discretized by 13

voxels for LB modeling. Our pore-network modeling a
proach, however, needs a morphological analysis of
sphere packing, which currently requires several days C
time on a SGI Origin 2000 using one processor.
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